Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35666275

RESUMO

Performing first-principles calculations to discover electrodes' properties in the large chemical space is a challenging task. While machine learning (ML) has been applied to effectively accelerate those discoveries, most of the applied methods ignore the materials' spatial information and only use predefined features: based only on chemical compositions. We propose two attention-based graph convolutional neural network techniques to learn the average voltage of electrodes. Our proposed methods, which combine both atomic composition and atomic coordinates in 3D-space, improve the accuracy in voltage prediction significantly when compared to composition-based ML models. The first model directly learns the chemical reaction of electrodes and metal ions to predict their average voltage, whereas the second model combines electrodes' ML predicted formation energy (Eform) to compute their average voltage. Our Eform-based model demonstrates improved accuracy in transferability from our subset of learned Li ions to Na ions. Moreover, we predicted the theoretical voltage of 10 NaxMPO4F (M = Ti, Cr, Fe, Cu, Mn, Co, and Ni) fluorophosphate battery frameworks, which are unavailable in the Material Project database. It could be shown that we can expect average voltages higher than 3.1 V from those Na battery frameworks except from the NaTiPO4F and TiPO4F pair of electrodes, which offer an average voltage of 1.32 V.

2.
ACS Appl Mater Interfaces ; 13(45): 53303-53313, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33985329

RESUMO

Two-dimensional (2D) materials have emerged as promising functional materials with many applications such as semiconductors and photovoltaics because of their unique optoelectronic properties. Although several thousand 2D materials have been screened in existing materials databases, discovering new 2D materials remains challenging. Herein, we propose a deep learning generative model for composition generation combined with a random forest-based 2D materials classifier to discover new hypothetical 2D materials. Furthermore, a template-based element substitution structure prediction approach is developed to predict the crystal structures of a subset of the newly predicted hypothetical formulas, which allows us to confirm their structure stability using DFT calculations. So far, we have discovered 267 489 new potential 2D materials compositions, where 1485 probability scores are more then 0.95. Among them, we have predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT formation energy calculation. Our results show that generative machine learning models provide an effective way to explore the vast chemical design space for new 2D materials discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...